Естествознание. Базовый уровень. 10 класс - Сивоглазов Владислав Иванович (читаемые книги читать онлайн бесплатно .TXT) 📗
Рис. 188. Радиальная симметрия: А – цветок; Б – снежинка; В – морская звезда
Рифма в поэтических произведениях также служит для придания им определённого ритма: через определённое число слогов происходит повторение звука или похожих сочетаний звуков.
Симметрия в пространстве может проявляться в повторении некоторых фигур через определённые промежутки длины. Этот приём часто используют в линейных орнаментах, обрамляющих стену или край покрывала. Для более сложных фигур как в природе, так и в искусственных предметах характерна радиальная, или лучевая, симметрия, которая проявляется в том, что при повороте изображения на определённый угол оно сохраняет свой прежний вид. Представим себе окружность с определённым радиусом. На какой бы угол мы её ни повернули, она всегда останется той же окружностью. Нанесём на эту окружность четыре точки на равном расстоянии друг от друга. Теперь, для того чтобы такая фигура сохранила свой вид, её надо повернуть на 90, 180, 270° или, естественно, на 360°. Если таких точек шесть, угол поворота должен быть кратным 60°. Такая симметрия наглядно проявляется в строении снежинок, многих цветков и некоторых животных, таких как актиния или морская звезда (рис. 188). Радиальной симметрией обладают также многие молекулы (например, бензола) и кристаллы.
Большинство животных, включая человека, обладают двусторонней симметрией (рис. 189). При этом через объект можно провести прямую линию, которая будет делить его на две равные части. Эту линию называют осью симметрии. Если мы рассмотрим объекты с радиальной симметрией, то увидим, что они тоже обладают осями симметрии, но не одной, как в случае двусторонней симметрии, а несколькими. Например, в круге с четырьмя точками их будет две. Двусторонняя симметрия обладает одной интересной особенностью. Положите руки по обе стороны от прямой линии на равном расстоянии от неё. Вы увидите две руки, одинаковые по форме, но противоположные по положению, что можно заметить хотя бы по тому, что большие пальцы направлены в разные стороны (рис. 190). Таким образом, левая рука по положению соответствует не правой руке, а её отражению в зеркале. Поэтому такая симметрия называется также зеркальной. Посмотрите на себя в зеркало. Вы увидите точное собственное изображение с той только разницей, что право и лево поменяются местами. Если вы поднимете правую руку, ваш двойник в зеркале поднимет левую, и наоборот. Поднесите к зеркалу правую руку, и вы увидите, что она выглядит в точности так же, как левая рука без зеркала. Таким образом, оказывается, что ось симметрии делит объект не на две одинаковые части, а на части, представляющие собой зеркальное изображение друг друга.
Свойство зеркальной симметрии может проявляться и во времени. В этом качестве она часто используется в музыкальных произведениях. Самое простое представление о музыкальной зеркальной симметрии можно получить, если сыграть гамму в обычном и обратном направлении. Этот приём использовался в разных видах многими композиторами. Например, у Иоганна Себастьяна Баха в его произведении «Музыкальное приношение» используется «ракоходный канон», который исполняют две скрипки, одна из которых играет мелодию в порядке, противоположном другой.
Предметы с двусторонней симметрией обладают одной особенностью: как бы мы их ни сгибали и ни поворачивали, совместить их друг с другом невозможно. Попробуйте сделать это со своими руками и убедитесь, что ничего не получится. Если все пальцы будут направлены в одну сторону, то ладони – в разные. Если направить ладони в одну сторону, то большие пальцы окажутся направленными противоположно друг другу. Если же и ладони, и большие пальцы направить в одну сторону, то противоположно направленными станут все остальные пальцы. Таким образом, совместить в пространстве предмет с его зеркальным изображением невозможно.
Рис. 189. Двусторонняя симметрия цветка и человека
Рис. 190. Зеркальные изображения и оптическая изомерия молекул
Эта особенность играет большую роль во многих природных явлениях. Особенно интересно она проявляется в биохимических процессах. Представим себе молекулу органического вещества, состоящую из четырёх атомов (см. рис. 190). Расположим атомы A, B и C в вершинах треугольника, а атом D на прямой, перпендикулярной к плоскости этого треугольника. Если смотреть со стороны точки D так, чтобы точка А была перед нами, то возможны два варианта: либо В будет справа, а С – слева, либо наоборот. Эти два варианта обладают зеркальной симметрией и не могут быть совместимыми посредством каких угодно поворотов. Следовательно, молекулы одного и того же вещества могут существовать в двух вариантах, условно называемых «правым» и «левым». Химические свойства «правых» и «левых» молекул абсолютно одинаковы, а физические различаются. Основное различие состоит в том, что их растворы по-разному пропускают свет. Поэтому каждый из двух видов строения молекулы называется оптическим изомером. Один вид называют D-изомером, а другой – L-изомером. Например, все аминокислоты в организме представлены L-изомерами, а все углеводы – D-изомерами. Противоположные изомеры не усваиваются клеткой и даже могут быть для неё вредными. Такое разделение появилось вместе с возникновением жизни на Земле и не менялось в течение всего процесса эволюции.
1. Как проявляется симметрия во времени в природных и общественных процессах? Какое свойство живого отражает симметрию во времени?
2. Что такое радиальная симметрия? Приведите примеры.
3. Объясните, почему двустороннюю симметрию иначе называют зеркальной.
4. Опираясь на знания, полученные в курсе биологии, объясните, с чем связано возникновение двусторонней симметрии в животном мире. В чём особенность живых организмов, обладающих радиальной симметрией?.
5. В каких системах нарушается равноправие D– и L-изомеров химических веществ?
1. Подберите эпиграф к данному параграфу.
2. Используя дополнительную литературу и ресурсы Интернета, подготовьте сообщение или презентацию на тему «Симметрия в природе и искусстве».
§ 7 Cистемы и системный подход
Развитие науки и проведение исследований в самых разнообразных областях человеческого познания привели к выводу, что в природе, помимо строгих физических законов, существуют и иные, не менее значимые закономерности, без учёта которых знания о существующем в природе порядке остаются неполными. Как мы уже могли убедиться, основой научного подхода является представление о том, что, детально изучив свойства элементов, составляющих некий целостный объект, и силы взаимодействия между этими элементами, мы можем получить полное знание об исследуемом объекте. Такое представление называют элементаризимом или редукционизмом (от лат. reductio – возвращение, приведение обратно). Однако среди некоторых мыслителей существовал и противоположный подход, сформулированный ещё Аристотелем и заключающийся в том, что целое не может быть просто суммой своих частей, оно содержит в себе нечто большее, несводимое к свойствам отдельных частей. Высказывались мнения о том, что целое и является главным во всяком объекте, а его элементы подчиняются свойствам этого целого. Такой подход получил название холизма (от греч. holos – целое).